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Abstract— In this paper, we consider a methodology that
utilizes qualitative expert knowledge for inference in a
Bayesian network. The decision-making assumptions and the
mathematical equation for Bayesian inference are derived
based on data and knowledge obtained from experts. A
detailed method to transform knowledge into a set of
qualitative statements and an “a priori” distribution for
Bayesian probabilistic models are proposed. We also propose a
simplified method for constructing the “a prior” model
distribution. Each statement obtained from the experts is used
to constrain the model space to the subspace which is
consistent with the statement provided. Finally, we present
qualitative knowledge models and then show a full formalism
of how to translate a set of qualitative statements into
probability inequality constraints.

Keywords-Bayesian network, Bayesian network inference,
decision-support  systems, qualitative  expert  knowledge,
probability inequality constraints Bayesian network, Bayesian
network inference, decision-support systems, qualitative expert
knowledge, probability inequality constraints

I. INTRODUCTION

One of the most difficult obstacles in the practical
application of probabilistic methods is the effort that is
required for model building and, in particular, for
indentifying the causal relationships among variables in the
model and quantifying graphical models with numerical
probabilities. In general, the causal structure and the
numerical parameters of a Bayesian Network (BN) can be
obtained from an expert or can be learned from a data set.
This paper only focuses on acquiring the causal structure
and the numerical parameters of a Bayesian Network from
an expert. In BN analysis, users can perform Bayesian
inference in the model and they can also compute the impact
by observing values of a subset of the model variables on
the probability distribution over the remaining variables. A
set of qualitative statements and numerical parameters
obtained from an expert are very important for inference in
a Bayesian network. Thus, the method to transform expert
knowledge, represented by a set of qualitative statements,
into an a priori distribution for Bayesian probabilistic
models is an important consideration. The set of available
information should be classified into an available set of data
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and a body of nonnumeric expert knowledge should be
included for performing Bayesian inference in a model.
Several notations have been adopted for a Bayesian model
class. A Bayesian model is determined by a graph structure
and by the parameter vector needed to specify the
conditional probability distributions given that structure.
The BN model distribution is represented by a mathematical
formula. Therefore, this paper provides a full formalism of
how to translate a set of qualitative statements into
probability inequality constraints, which is described in
section 4. Several cases are provided of how Bayesian
influence is classified and the probability inequality
constraints are shown for each case.

This paper is organized as follows: Section 2 presents
more detail about the background of Bayesian networks and
some perspectives of qualitative causal relationships in the
Bayesian approach. Section 3 addresses the methods to
transform expert knowledge into an a priori distribution for
Bayesian probabilistic models in more detail. Section 4
describes the probabilistic representation of a qualitative
expert knowledge model and section 5 presents a conclusion
and discusses some perspectives and ideas for future work.

II. BACKGROUND

This section is intended to describe the background of
Bayesian networks and some perspectives of qualitative
causal relationships in the Bayesian approach. Bayesian
networks (also called belief networks, Bayesian belief
networks, causal probabilistic networks, or causal networks)
are acyclic directed graphs in which nodes represent random
variables and arcs represent direct probabilistic
dependencies among the nodes [1]. Bayesian networks are a
popular class of graphical probabilistic models for research
and application in the field of artificial intelligence. They
are motivated by Bayes’ theorem [2] and are used to
represent a joint probability distribution over a set of
variables. This joint probability distribution can be used to
calculate the probabilities for any configuration of the
variables. In Bayesian inference, the conditional
probabilities for the values of a set of unconstrained
variables are calculated given fixed values of another set of
variables, which are called observations or evidence.
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Bayesian models have been widely used for efficient
probabilistic inference and reasoning [1], [3], and numerous
algorithms for learning the Bayesian network structure and
parameters from data have been proposed [4], [5], [6]. The
causal structure and the numerical parameters of a Bayesian
network can be obtained using two distinct approaches [7],
[15]. First, they can be obtained from an expert. Second,
they can also be learned from a dataset or data residing in a
database. The structure of a Bayesian network is simply a
representation of independencies in the data and the
numerical values are a representation of the joint probability
distributions that can be inferred from the data [8, 9]. In
practice, some combination of these two approaches is
typically used. For example, the causal structure of a model
is acquired from an expert, while the numerical parameters
of the model are learned from the data in a database.

For realistic problems, the data base is often very sparse
and hardly sufficient to select one adequate model. This is
considered as model uncertainty. Selecting one single model
can lead to strongly biased inference results. On the other
hand, in science and industry, there is an enormous amount
of qualitative knowledge available. This knowledge is often
represented in terms of qualitative causal relationships
between two or more entities. For example, in the statement:
“smoking increases the risk of lung cancer,” the two entities:
smoking and lung cancer are related to each other. Moreover,
the smoking entity positively influences the lung cancer
entity since lung cancer risk is increased in the case of
smoking. It is therefore desirable to make use of this body of
evidence in probability inference modeling.

I1I. METHODS

In this section, we describe a methodology to use
qualitative expert knowledge for inferencing in a Bayesian
network. We proceed from the decision-making
assumptions and the general equation for Bayesian inference
based on data and knowledge obtained from an expert to a
detailed method to transform knowledge, represented by a
set of qualitative statements, into an a priori distribution for
Bayesian probabilistic models.

Consider a simple case of decision making in which the
body of expert knowledge o consists of a single statement ®
= “making decision A causes B”. We know that there are 2
random events or variables A and B, which we assume are
binary, and we need to consider the set of all possible
Bayesian models on A and B. The set of possible model
structures are described in the following categories: 1) §,: A
and B have no causal relationship between them, 2) S.: A
and B have some causal relationship between them but the
direction of influence cannot be identified, 3) Si;: A causes
B, and 4) S,: B causes A. “decision making in an event A
activates an event B” directly states a causal influence of A
on B. We use the statement “A activates B™ to constrain the
space of structures: P(S;|lw) = 1; P(S,|w)=0, n=1,2,4). The
is represented as a qualitative statement described by the

expert, A causes B. The graph structure (S;) encodes the
probability distribution

P(A,B) = P(BIA)P(A) (1)

No further information on P(A) is available; however,
P(B|A) can be further constrained. The corresponding
Conditional Probability Table (CPT) is shown in Table 1.

TABLE 1. CONDITIONAL PROBABILITY TABLE
A P(B=1]A)
0 B;
1 0,

The values of the conditional probabilities from the
components of the parameter vector 6 = (0, 0,) of the model
class with structure S;. 6 is the probability of B is active
when A is not active. 0, is the probability of B is active
when A is active.  From the statement, we now can infer
that the probability of B is active when A is active is higher
than the same probability with A inactive. The P(B|A) when
P(A) is available is higher than the P(B|A) when P(A) is not
available. The inequality relationship is obtained as follows:

P(B=1|A=1) = P(B=1|A=0), 6, = 6, 2)

Hence, the set of model parameters consistent with that
statement is given by

©;={(05,0)]0<8,<1AB<0,<1} (3)

and the distribution of models in the structure-dependent
parameter space becomes

1.6 €0,
P(® Si.0) = (4)
0. else

A Bayesian model m represents the joint probability
distribution of a set of variables X = X,, X,, Xs...., Xp. The
model is defined by a graph structure, which determines the
structures of the conditional probabilities between variables,
and a parameter vector 0, the components of which define
the entries of the corresponding conditional probability
tables (CPTs). Hence, a Bayesian network can be written as
m = {s, 0}. Given some observations or evidence E,
reflected by fixed measured values of a subset of variables,
the conditional probability given the evidence in light of the
model is described as P(X|E, m).

The full Bayesian network model does not attempt to
approximate the true underlying distribution. Instead, all
available information is used in an optimal way to perform
inference, without taking one single model for granted. To



formalize this statement for our purposes, let us classify the
set of available information into an available set of data D
and a body of nonnumeric expert knowledge . The
probability distribution of model m is given by

P(mD, ®) = P(Dm)P(m o) g
P(D, ®) ®)

The first parameter value D of P(D, w) is the likelihood
of the data given the model, which is not directly affected
by nonnumeric expert knowledge , the second parameter
value @ denotes the model a prior, whose task is to reflect
the background knowledge. For simplicity, the numerator
P(D, ®) of P(m|D, @) will be omitted from the equation (5).
The term P(D|m) contains the constraints of the model space
by the data, and the term P(m|w) contains the constraints
imposed by the expert knowledge. Hence, given some
observation or evidence E, the conditional distribution of the
remaining variable X is performed by integrating over the
models.

P(X|E, D, ®) = | P(X|E, m)P(m|D, ®)dm (6)
= [ P(X|E, m)P(D|m)P(m|w)dm (7

In this paper, we consider the case of no available
quantitative data; D is assigned a null value. The term D and
P(Djm) will be omitted from equation (6) and (7). Even in
this case, it is still possible to perform a proper Bayesian
inference.

P(X|E. ®) = | P(X|E, m) P(m|w)dm (8)

Now, the inference is based on the general information
(contained in w) obtained from experts, and the specific
information provided by the measurement E. In order to
determine P(m|w), we need a formalism to translate the
qualitative expert knowledge into an a priori distribution
over Bayesian models. The following notations are adopted
for a Bayesian model class. A Bayesian model is determined
by a graph structure s and by the parameter vector 6 needed
to specify the conditional probability distributions given that
structure. The parameter vector 6 is referred to by one
specific CPT configuration. A Bayesian model class is then
given by 1) a discrete set of model structures S = {s,, s5, s3,
..., 8¢} and for each structure s,, a set of CPT configurations
©,. The set of member Bayesian models m € M of that class
is then given by m = {(s,, 0)k € {1, ..., K}, 6 € ©,}. The
model distribution is shown in (9).

[}

P(m) = P(5,. 0 0)

1}

_ P(6 51, @)P(s 1) o)

Y Ip,P@® s, ©)d0 P(s, )

a=1

-

In (9), the set of allowed structures is determined by
means of , followed by the distributions of the
corresponding CPT configurations. The model’s a posterior
probability P(m|w) is calculated as shown in (9). Inference is
carried out by integrating over the structure space and the
structure-dependent parameter space.

K
P(XE. 0) = SJ'G_P(XE. sk B)P(sy. 0 0)do (10)
k=1 "

It is common to express nonnumeric expert knowledge
in terms of qualitative statements about a relationship
between entities. The w is represented as a list of such
qualitative statements. The following information is
essential to determine the model a priori (10): First, each
entity which is referenced in at least one statement
throughout the listed is assigned to one variable X;. Second,
each relationship between a pair of variables constrains the
likelihood of an edge between these variables being
presented. Last, the quality of the statement such as
activates or inactivates affects the distribution over CPT
entries 0 given the structure. The statement can be used to
shape the joint distribution over the class of all possible
Bayesian models over the set of variables obtained from @
in the general case.

We propose a simplified method for constructing the a
priori model distribution. Each statement is used to
constrain the model space to that subspace which is
consistent with that statement. In other words, if a statement
describes a relationship between two variables, only
structures s, which contain the corresponding edge are
assigned a nonzero probability P(siw). Likewise, only
parameter values on that structure, which are consistent with
the contents of that statement, are assigned a nonzero
probability P(0ls,, ®). If no further information is available,
the distribution remains constant in the space of consistent
models.

Having derived the Bayesian model class (s;, ©;)
consistent with the statement, we can now perform inference
by using an equation (10). Under the condition of A is set to
active (E = {A = 1}), let us ask what is the probability of
having B active. We can determine this by integrating over
all models with nonzero probability and averaging their
respective inferences, which can be done analytically in this
simple case.

@

P(B=1E, ©) =T P(s, ®) Jos P(BA. 5i.. 0)P(8 s;., 0)d8

k=1

=0l P(B=1A=1. 6)do (11)
11

=w)]6,d8; do; =23
o6,



where @ = 2 is the normalizing factor in the parameter space
of 0 = (9{; * B|} such that

11
©]]de,de, =1
06,

(12)

It is worth noting that, as long as simple inequalities are
considered as statements, the problem remains analytically
tractable even in higher dimensions. In general, integration
during Bayesian inference can become intractable using
analytical methods.

IV. PROBABILISTIC REPRESENTATION OF A QUALITATIVE
EXPERT KNOWLEDGE MODEL

The model from the previous section is derived to
provide a full formalism of how to translate a set of
qualitative statements into probability inequality constraints.
Several qualitative models have been proposed in the
context of qualitative probabilistic networks. Qualitative
knowledge models describe the process of transforming
qualitative statements into a set of probability constraints.
The proposed Bayesian inference method outlined above is
independent of the qualitative knowledge model. The
model’s a posterior probability is independent of the set of
qualitative statements used, once the set of probabilistic
inequality constraints which are translated from qualitative
statements is determined. Three existing qualitative models
are the Wellman approach [10], the Neufeld approach [11],
and the orders of magnitude approach [12]. In this paper, we
utilize the Wellman approach, where qualitative expert
knowledge involves influential effects from parent variables
to child variables which are classified according to the
number of inputs from parent to child and their interaction.
For reasons of simplicity, binary-valued variables are used
in our examples. The values of a variable or node defined as
“present” and “absent” or “active” and “inactive” are
represented as logical values “1™ and “0” (as synonyms A
and A). For multinomial variables, similar definitions can be
applied.

Qualitative influences with directions can be defined
based on the number of influences imposed from parent to
child. There are three cases of influences, namely, single
influence, joint influence, and mixed joint influence. We
will also discuss the qualitative influence derived from
recurrent or conflicting statements based on three cases of
influence. The definitions of influence presented in this
article are refined based on the QPN in [10]. They are used
to translate the qualitative expert statements into a set of
constraints in the parameter space which can be used to
model the parameter distribution given the structure.

A.  Single Influence

In the statement, “investing in project A increases the
profit of the entire project in such good economic
situations,” investing in project A is the parent node which

has a single positive influence on child node the profit of the
entire project. The “Invest A” or “not invest in A" means
that the company may invest in other projects rather than the
project A.

P(Entire Project ProfitInvest A) = P(Entire Project Profit Invest A)

In another statement, “investing in project A reduces the
profit of the entire project in such a severe economic crisis,”
investing in project A is the parent node which imposes a
single negative influence on child node the profit of the
entire project.

P(Entire Project ProfitInvest A) = P(Entire Project ProfitInvest A)

The graphical representation of the above qualitative
statements from an expert is shown in Fig.1.

( Tuvest )

Project A

Figure 1. Example of single positive and negative influence.

B.  Joint Influence

Let us consider credit worthiness of individual causes.
Several risk factors have been identified for credit
worthiness. According to the Thai credit bureau report, the
three most prominent risk factors are reliability, future
income, and age. The chance of getting credit worthiness
increases as an individual gets higher future income, age,
and reliability. This knowledge about credit worthiness
factors can be encoded by a qualitative causality model.
According to the statements, the main risk factors that
influence credit worthiness by positive synergy as shown in
Fig. 2.

P 8 e P -~
( rawtr Y Funire ) Age )
X ] Vi \ [ncome / \ A
| i_x\j:"//_k -
-~ .,
[-' Credix ]
Werthiness

Figure 2. Example of plain synergy influence. Reliability, future income,
and age synergically influence credit worthiness.

The joint influence of these three factors together is
more significant than individual influences from any of



these factors alone. We can represent this synergy by the
inequalities

P(CWR, I,

P(CWR,FL A) 2 { P(CWR.FLA) \
| PCWR. J

Jp(c“ R.FL A)
PICWR.FL A) =< PICWR. Fl A

P(CWR.FL A)
and

P(CWR.FL A) > P(CWR. FL A)
If we assume these risk factors pair wise symmetric, we
can further derive the following inequalities:

P(CWR. FI. A) [ P(CWR. FL 7{)]
P(CWR.FL A) = 1 P(CWR.FLA)

PCWR, FLA) | PICWR.FL A) J

where CW, R, FI, and A stands for Credit Worthiness,
Reliability, Future Income, and Age. Note that often but not
always, the combined influence refers to the sum of
independent influences from each parent node to each child
node. Assume that parent nodes R and FI impose negative

individual influence on child node CW, then the knowledge
model can be defined as

" PICWR, FD)

1
o
~
=
|
|
—

PICWR.FD) =
1?{&{ FI)

C. Mixed Joint Influence

Generally, the extraction of a probability model is not
well defined if the joint affect on a child is formed by a
mixture of positive and negative individual influences from
its parents. Therefore, we adopted the following scheme: If
there are mixed influences from several parent nodes on a
child node, and no additional information is given, then
these are treated as independent and with equal influential
strength. Assume that parent node A imposes a positive
single influence on child node C and parent node B imposes
a negative single influence on child node C, then the joint
influence can be represented by

P(CA.B)>P(CA, B).
P(CA.B)=P(CA.B).
P(CA.B)>P(CA. B).
P(CA.B)=>P(CA. B).

For example, future income imposes a positive single
influence on credit worthiness and debt imposes a negative
single influence on credit worthiness, then the joint
influence can be represented by

P(CWFL D)>P(CWTFL D).
P(CWFI. D)= P(CWFLD).
P(CWFL D) = P(CWFL. D).
P(CWFL. D) = P(CWTL D).

A credit worthiness case study for a mixed joint
influence is shown in Fig. 3.
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Figure 3. Example of mixed joint influence. Debt and future income
influence on credit worthiness.

Once formulated, we can use a Monte Carlo sampling
procedure to make sure that all inequalities are satisfied for
valid models. Any additional structure can be brought into
the CPT of the corresponding structure as soon as the
dependencies between influences are made explicit by
further qualitative statements.

D. Recurrent Statements

Recurrent statements such as “A activates itself” or “A
activates B”; “B activates A" cannot directly be represented
in Bayesian models. This problem can be solved by
transforming the initial Bayesian model class into the
equivalent class of a Dynamic Bayesian Network (DBN)
[13], [14]). A DBN is a BN extended with a temporal
dimension to enable us to model dynamic systems. A DBN
unfolds the variable space in time, i.e., each variable exists
in two replicas, one in a “cause” layer, the second one in the
“effect” layer. A causal relationship from variable X; to
variable X; is transformed to an edge from X; in the cause
layer to X; in the effect layer. As a consequence, the
resulting DBN automatically obtains a directed acyclic
graph structure.

V. CONCLUSION AND FUTURE WORK

In this paper, a methodology to use qualitative expert
knowledge for inference in a Bayesian network is proposed.
We establish the decision-making assumptions and the



general equation for Bayesian inference based on data and
knowledge obtained from experts. We also describe a
detailed method to transform knowledge, represented by a
set of qualitative statements, into an a priori distribution for
Bayesian probabilistic models. The set of model parameters
consistent with the statements and the distribution of models
in the structure-dependent parameter space are presented.
We propose a simplified method for constructing the a prior
model distribution. Each statement is used to constrain the
model space to a subspace which is consistent with the
statements. Next, we provide a full formalism of how to
translate a set of qualitative statements into probability
inequality constraints. Several cases of Bayesian influence
are classified and the probability inequality constraints
presented in each case are described.

For future research based on this study, we intend to
apply Bayesian network inference with qualitative expert
knowledge for group decision making. The qualitative
knowledge from different experts in group work will be
considered as a case study. Group decision knowledge will
further be transformed into a set of qualitative statements and
then converted into probability inequality constraints. We
will apply the proposed method to a specific case study using
a set of group decision making statements and report the
simulation results.
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